Pulse Analysis

Philipp Jörg HK 35.6

Albert-Ludwigs-University Freiburg

DPG 2012

COMPASS

Großgeräte der physikalischen Grundlagenforschung

Introduction Constant Fraction Algorithm

CAMERA-Detector at COMPASS

Introduction Constant Fraction Algorithm

The GANDALF Framework

 The GANDALF Framework (see HK 34.5 - Max Büchele and 53.8 - Florian Herrmann)

- 12 bit Sampling ADC
- Sampling rate 500 MHz -1GHz

Introduction Constant Fraction Algorithm

Constant Fraction Algorithm

Introduction Constant Fraction Algorithm

- Remove baseline bias
- Invert
- Apply Fraction Factor
- Take original

Introduction Constant Fraction Algorithm

- Remove baseline bias
- Invert
- Apply Fraction Factor
- Take original & delay

Introduction Constant Fraction Algorithm

- Remove baseline bias
- invert
- Apply Fraction Factor
- Take original & delay
- Add the pulses

Introduction Constant Fraction Algorithm

Simulation Input The Correction Method

Philipp Jörg HK 35.6

Pulse Analysis

Simulation Input The Correction Method

Without Correction

Simulation Input The Correction Method

Without Correction

Simulation Input The Correction Method

Corrected Data

Simulation Input The Correction Method

Resolution vs Amplitude

resolution/ns 10^{-1} Constant Fraction Delay 1 ff0.6 10^{-2} corrected 10² 10^{3} Amplitude/mV

Time of Flight with cosmics

Conventional Constant Fraction

Philipp Jörg HK 35.6 Puls

Time of Flight with cosmics

Conventional Constant Fraction

Philipp Jörg HK 35.6 P

Pulse Analysis

Time of Flight with cosmics

Conventional Constant Fraction

Philipp Jörg HK 35.6

Pulse Analysis

Time of Flight with cosmics

Corrected Constant Fraction

Philipp Jörg HK 35.6 P

Time of Flight with cosmics

Conclusion

- Method to increase the time resolution
- In case of the T.o.F. measurement: an improvement in time resolution of about 30 %
- In any case a reduction of systematic errors of the algorithm
- hadron.physik.uni-freiburg.de/gandalf

double pulses

myon plots get correction Classification analytic calculation baseline Harrach algorithm

double pulse plot

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

saclay unco

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

saclay co

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

get the correction: first method

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

profile and fit Aup

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

Iteration Process

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

First Iteration

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

Second Iteration

Philipp Jörg HK 35.6 Pulse Analysis

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

Third Iteration

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

Introdu Simu Real Bi	action lation data ackup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

Definition of Q

acupie puises myon plots get correction Classification analytic calculation baseline Harrach algorithm

Q Classification Simulation: risetime 1, 1.5 and 2 samples

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

All Pulses

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

All Pulses higher 50 mV

double puises myon plots get correction Classification analytic calculation baseline Harrach algorithm

Complement to 50 mV

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

Q for complement and cut

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

Time Difference for cutted complement

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

highres time

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

calc

$$\begin{split} & \mathcal{M}(x) = \\ & exp(\frac{-x}{2w} - \frac{exp(-x/w)}{2} - \frac{1}{2w} + \frac{1}{2w} - \frac{exp(-(x+1)/w)}{2} + \frac{exp(-(x+1)/w)}{2}) \\ & = exp(1/2w)exp(exp(-(x+1)/w)/2)exp(exp(-x/w)/2)\mathcal{M}(x+1) \\ & \text{mit } a = exp(\frac{1}{2w}) \\ & = aexp((exp(-(x+1)/w) - exp(-x/w))/2)\mathcal{M}(x+1) \\ & = aexp(\frac{1}{2}(\frac{1}{a^2})^x(\frac{1}{a^2} - 1)\mathcal{M}(x+1) \\ & \text{kurz } \mathcal{M}(x) = B(x)\mathcal{M}(x+1) \\ & \text{mit } B(x) = aexp(\frac{1}{2}(\frac{1}{a^2})^x(\frac{1}{a^2} - 1)) \\ & \mathcal{H}ighres = \frac{-f\mathcal{M}(x+1) + \mathcal{M}(x)}{f\mathcal{M}(x+2) - \mathcal{M}(x+1) - f\mathcal{M}(x+1) + \mathcal{M}(x)} \\ & = \frac{-f\mathcal{M}(x+1) + B(x)\mathcal{M}(x+1)}{f\frac{1}{B(x+1)}\mathcal{M}(x+1) - f\mathcal{M}(x+1) + B(x)\mathcal{M}(x+1)} \\ & = \frac{B(x) - f}{f\frac{1}{B(x+1)} - (1+f) + B(x)} \\ & \text{hier fallen die Amplituden raus} \end{split}$$

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

calc

Nullstelle: B(x) - f = 0 $x = ln(\frac{2ln(f/a)}{\frac{1}{a^2} - 1})/ln(\frac{1}{a^2})$ => Parametrisierung: (Highres(x), x + Highres(x))mit $x \in \left[ln(\frac{2ln(f/a)}{\frac{1}{a^2} - 1})/ln(\frac{1}{a^2}), ln(\frac{2ln(f/a)}{\frac{1}{a^2} - 1})/ln(\frac{1}{a^2}) - 1\right]$

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

Resolution vs Amplitude

resolution/ns

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

designed for poisson pulses
Ct^{tm/τ} e^{-t/τ}

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

• to get estimates of the time of each pulse

		Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

- arises from a model of the phase derivative of the pulse
- in practice one has to form the expression $\frac{f(t)}{f'(t) + \frac{f(t)}{\tau}} (blue)$
- so one has to form a discrete derivative (like cf)

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

 without knowing the real pulse shape, τ is treated as a free parameter in the simulation

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm	

• later results are for one pulse

Introduction Simulation Real data Backup	double pulses myon plots get correction Classification analytic calculation baseline Harrach algorithm

• produce zero crossing to get time estimate

