A multichannel Time-to-Digital Converter (TDC) inside a Virtex-5 FPGA on the GANDALF module

Maximilian Büchele

DPG Frühjahrstagung 2011 Münster

HK 14.2

Albert-Ludwigs-Universität Freiburg

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

UNI FREIBURG

- GANDALF with Digital Mezzanine Cards
- TDC concepts
- TDC implementation in the FPGA
- measurements
- conclusion

Digital Mezzanine Card (DMC)

- 2 x 32-channel VHDCI connectors
- 64 differential inputs (LVDS and LVPECL) or 64 differential outputs (LVDS)
- 1x NIM input, 2x NIM outputs
- jitter contribution < 25 ps

→ <u>Multichannel TDC:</u> 2x DMC per GANDALF module => 128 TDC channels

more about GANDALF module: http://hadron.physik.uni-freiburg.de/gandalf/

delay

 $clr \overline{Q}$

din

clk

TDC concepts

Trivial concept of TDC

sampling of data signal \rightarrow TDC bin width = 1/f_{max} \approx 2 ns f_{max}: 500 MHz (Virtex-5)

D SET O

 $_{CLR} \overline{Q}$

reduce TDC bin width by: Delayed Data Sampling

delay

D SET Q

 $CLR \overline{Q}$

delay

D SET O

 $_{CLR} \overline{Q}$

same clock signal at flip-flops

- equidistant *phase shift* of clock signal $\varphi_{delay} = 2\pi/n$
- same data signal at flip-flops

Partitions

Shifted Clock Sampling:

- FPGA Clock Management Technology
 - clock phase and frequency modulation with PLLs
- different Clock Domains
 - asynchronous register outputs => "partitions" needed

'overlap' avoids loss of hits!

Trigger Matching

- time stamp measurements
- select only hits within a time window around a trigger signal
- trigger signal is related to data in the past
 - \rightarrow hit data storage inside FPGA needed

TDC overview

Implementation

Challenge

- accuracy of TDC bin width influenced by
 - → clock "jitter"
 - \rightarrow clock "phase error"
 - \rightarrow "routing delay" of data signal

Timing constraint: NET "inst_TDC_8bin/sig_DatatoFFs_A" MAXSKEW = 0.025 ns; 1 net analyzed, 0 failing nets detected. 0 timing errors detected. Maximum net skew is 0.023ns.			
Slack: <u>0.002</u> ns <u>inst T</u> Report: 0.023ns skew mo From SLICE_X51Y91.D SLICE_X51Y91.D SLICE_X51Y91.D SLICE_X51Y91.D SLICE_X51Y91.D	OC 8bin/siq DatatoFFs A eets 0.025ns timing cor To SLICE_X48Y90.DX SLICE_X48Y91.DX SLICE_X49Y90.DX SLICE_X49Y90.DX SLICE_X49Y91.CX	nstraint by 0.002ns Delay(ns) Skew(n 0.284 0.023 0.281 0.020 0.284 0.023 0.281 0.020	ns
		·····	ļ

IBURG

Implementation

Phase-shifted clocks produced by PLLs

FPGA usage

% Util

21.03.2011

Maximilian Büchele

IBUR

Differential Nonlinearity (channel 0)

Maximilian Büchele

UNI FREIBURG

Differential Nonlinearity (all channels)

time stamp difference 'channel x' to the mean of all other channels:

presently:

- 32 TDC channels
- time resolution 160 ps

<u>under progress:</u>

- FPGA-design extension to **128 channels**
- bisection of TDC bin width can be achieved by locally inverting the clocks to produce 16 phase-shifted clocks → TDC bin: 160 ps