Der GANDALF 128-Kanal Time-to-Digital Converter (TDC)

Maximilian Büchele

HK34.5, DPG Frühjahrstagung 2012, Mainz

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

The GANDALF module

The GANDALF module

Mezzanine Cards

GANDALF with digital mezzanine cards

- 128 differential inputs or outputs
- Versatile I/O applications :
- → e.g. time-to-digital converter scaler, mean-timer, trigger logic

GANDALF transient recorder

- 16 analog inputs for A/D conversion (500 MS/s @ 12 bit)
- Real-time pulse shape analysis (time resolution up to 10 ps)
- See HK 35.6

GANDALF with optical mezzanine cards

- 8 optical inputs or outputs
- High Speed Data Transfer to/from detector FE modules (3.125 Gbit/s per channel)

GANDALF TDC design objectives

Implement 128 TDC channels in Virtex-5 FPGA TDC specifications:

- Time resolution < 100 ps for time stamp measurements
- Leading and/or trailing edge sensitive
- Multi-hit capability
- 10 ns double hit resolution
- 16 bit dynamic range

Advanced readout capability:

- 20 µs look-ahead/look-back hit buffer
- Programmable trigger window
- Dead-time free data readout

Replace F1-TDC at COMPASS experiment

Time-to-Digital Converter

Common TDC concept:

Delayed Data Sampling:

• $T_{clk} = n \times \tau_{Delay}$

Uniform propagation delays in FPGA is not trivial:

- e.g. carry chain ~ 30 ps (Virtex-5)
 - + High resolution TDC

- Logic consumption exceeds device resources

Time-to-Digital Converter

Alternative TDC concept:

Shifted Clock Sampling:

- $360^\circ = n \times \Delta \varphi$
- *time stamp = course counter + register output*

Time-to-Digital Converter

Alternative TDC concept:

→ Synchronization of clock domains!

16-bin TDC design

- 16 phase-shifted clocks
- 8 clocks by 2 PLLs within FPGA
 - 8 more clocks by locally inverting clock signal
- TDC bin size: $\frac{\frac{1}{_{388.8 MHz}}}{_{16}} \approx 160 \ ps$

16-bin TDC design

Trigger signal is related to data in the past:

\rightarrow Data storage in FPGA needed ("*Virtex-5 Block RAM*")

 \checkmark memory depth 1k

✓ max. latency 20 µs

16-bin TDC design

• F1-blocks combining 8 TDC channels:

FPGA implementation

Input signal routing skew:

Branching points ("Virtex-5 Slice")

FPGA implementation

Input signal routing skew:

Branching points ("Virtex-5 Slice")

FPGA implementation

Incremental Design Reuse:

Measurement results

Differential Nonlinearity (DNL)

- → Statistical code-density test:
 - N random hits
 - Number of hits n_i in each TDC bin

•
$$DNL_i = \frac{n_i}{N_{/16}} - 1$$

Measurement results

Integral Nonlinearity (INL)

 $\rightarrow INL_i = \sum_{j=0}^i DNL_j, \quad i = 0, 1, \dots, 15$

- Deviation from ideal TDC transfer function
- Time resolution limited by INL

Measurement results

Time resolution

• Expected: $\sigma_{exp} = \sqrt{\sigma_{theo}^2 + 2 \times \sigma_{INL}^2}$,

 $\sigma_{INL} = std.dev.(INL)$

• Minimum: $0.42 \times LSB$ Maximum: $0.58 \times LSB$

Conclusion and Outlook

Design objectives achieved:

✓ 128 TDC channels implemented in single Xilinx Virtex-5 FPGA

- ✓TDC bin size: 160 ps
- \checkmark Time resolution < 93 ps
- ✓ Virtex-5 SX95T device usage:

43% Flip-flops 27% LUT 73% Block RAM 22% DSP Slice

In progress:

✓ Integrate 128 scaler channels into same design

✓ Migrate TDC design in low-cost FPGA as FE

Backup

